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Abstract

Ultrafast surface second harmonic generation (SHG) studies are reported for several
oxazine dyes at the air/water interface. As we demonstrated previously [J. Phys.
Chem. B 2001, 105, 3062] in our steady-state SHG studies of aqueous oxazine dye
solutions, the SHG signals are aimost entirely due to dimers. The transient SHG
recovery is biexponential with time constants of 4-8 ps and 22-44 ps depending on
the dye and the solution composition. Transient absorption measurements for bulk
dye solutions of water and methanol and the results indicate a fast (2 ps) solvation
dynamics component as well as alonger component due to the excited-state lifetime
(>400 ps). The SHG recovery is single-photon resonant and is attributed to two
parallel ground state recovery mechanisms, restricting the possible explanations for
the observed decay times. The shorter SHG decay time (=5 ps) could be due to
ground state solvent relaxation, while the intermediate decay time (~25 ps) mostly
likely results from vibrational relaxation of “hot” ground state aggregates after
internal conversion (IC) / intersystem crossing (ISC). The two decay times are
different than what is seen for bulk solution and they resemble what has been
previously reported for dye aggregates.
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Introduction
Why Study Interfaces?

Interfaces are involved in many physical / biological / atmospheric systems

Compared with isotropic (bulk) environments:
e Are interfaces unique? If so, how?
e Are microscopic and macroscopic properties altered similarly?

Why Study Dye Aggregates?

Industrial Applications
e Photography, photovoltaic cells, light harvesting devices

Dye Aggregates are a sensitive probe of environment
e Laser dyes are well characterized in the bulk

e Dye aggregates are more prevalent at the air/water interface than in
the bulk (IR125, Levinger, 1995)
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Second Harmonic Generation at the Air/Water Interface

Nonlinear surface spectroscopy:
Detects molecules only at the interface

Second Harmonic Generation (SHG) W 2W
1(2w) O [x@ H(w)P?

§=N,<T>p

Previous SHG and Sum Frequency Generation studies of
air/liquid (& liquid/liquid) interfaces:
Steady state (spectra; IR & UV/VIS) > dynamics (VIS)

Steady state Dynamics
pH, pK rotational reorientation
adsorption free energy (AG_,.) iIsomerization
surface polarity
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SHG from Oxazine Dyes at the Air/Water Interface

Steady-state SHG Studies - study equilibrium properties:
e Electronic Structure: Ig,; VS. A spectra

e Surface K, and AG_: Ig,s VS. bulk dye concentration

e Composition: dependence on bulk salt, surfactant, other solvents

e Aggregate orientation at interface: anisotropy (lg,g VS Y)
Dynamics Studies

Visible pump - probe transient absorption of bulk dye solutions
Visible pump - SHG probe of the dyes at the air / water interface

C2H5_N

J@

Oxazine 720

Cresyl Violet Nile Blue
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H-Aggregate Dimer Electronic Structure

Exciton theory of dipole - dipole coupling (Kasha, 1958)

Coupling depends on distance and relative orientation of monomers
Electronic level splitting - spectral shift of aggregate absorption
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Results from Bulk Solution Absorption Spectra

Agreement with previous results for K:

e For Ox720 with literatureab

e Relative scalingc: Ox720 > NB > CV

Adding salt increases dimer concentration (1/K,) by factor of 2 - 3

Oxazine dyes in water: Peak positions and K

Dye Amax (MONomer) Amax (dimer) 1/K4
(nm) (nm) (M) (£ 30%)

oxazine 720 620 570 50,000
50,0002
10,000-100,000°

Nile blue 630 590 10,000

cresyl violet 580 550 3200

a Gvishi & Reisfeld, 1989 b Herkstroeter et al., 1990 ¢ Morozova and Zhigalova, 1982
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Time-Resolved

|

SHG Interface Studies

Laser System a), b), or ¢)

Mono-

chromator ’r

a) Ti:Saphire Regen/OPA
460 - 700 nm
30 wJ, 130 fs

b) ML Nd:YAG OPG/OPA
450 - 650 nm >
300 pJ, 80 ps

Steady-State

c) Nd:YAG Dye
560 - 650 nm
5md, 10 ns /
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Normalized SHG Field / Absorbance

SHG Spectra of Oxazines at Air/Water Interface

| Nile Blue

vvvvvvvvvvvvvvvvvvvvvvvvvvvv

bulk linear absorption
©  SHG Amplitude
SHG Gaussian fit

500 550 600 650 700 750
wavelength (nm)

e One band in SHG spectra
single species

e SHG(w): resembles input
resonance (at w) more than
output (at 2w)

e SHG peaks are slightly red-
shifted

e Red-shift previously reported
for dye dimers at air / solid
interface (Kemnitz & Leach):
intermolecular interactions
rather than a more polar
interface

e Interface polarity has been
found to be average of two
bulk phases (Eisenthal)
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SHG Polarization Dependence and Orientation
Z
Input (y) and output polarization resolved Ig, - SHG
¢ Orientational information

e SHG dependence:
concentration or orientation?

Methods extensively developed and used

Xigk = Ng Z <T 3 (6,0, 9> By,

Isand I, vs'y » susceptibilities

0,0, @
orientation of
molecular axes and
dipole

— /
\

Femtochemistry V - Toledo, September, 2001




Results from SHG Polarization Dependence/Anisotropy

5 = 45°,
“\E?AC):" random
0 (°)
_ 0 17.2
Nile
blue
0.01 20.3
_ 0 23.4
oxazine
720
0.1 22.5 O
I
0
3
0 26.0 S
cresyl g
violet | o1 | 245 S
. . 0 15 30 45 60 75 90
Similar results for all dye samples: Input Polarization Angle (y)

e Little or no detectable orientation variation

o lgg Vs. solution composition: [Dimer] not orientation!!!
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Steady-State SHG of Oxazine Dyes

Results from several measurements:

SHG Only from Dimers at Surface
e Single band in spectra
e Orientation independent of coverage
o lg,c consistent with bulk aggregate behavior

o Increases with salt concentration

o No SHG from
¢ Methanolic and surfactant solutions
¢ Non-aggregating oxazines

Interface effects vary with property:

e Dimer preference at water surface
o Surface less polar than bulk - average of bulk phases (Eisenthal)
o Our measurement of AG_ also consistent with lower polarity

e Red-shifted spectra
o Could be intermolecular interactions of dyes

Aggregates at the interface are a sensitive probe of surface effects!
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Ultrafast Studies of Oxazines at Air/Water

Previous ultrafast work on:

e Dyes in solution Solvation dynamics - mature field

e Aggregates Mostly thin film / monolayer and J-aggregates

e Liquid interfaces Rotational dynamics & isomerization

e Oxazines CV, NB on SiO, and SnO, nanopatrticles (Kamat)

# of decay times: One for insulators
Two for semiconductors (back ET)

S Initial internal conversion -
S’ S - S (IC): <100 fs
T Fluorescence not observed

Resolved time:
S, S, S - §(C,ork.)

monomer dimer CV:2.5ps
NB:<20 ps

Femtochemistry V - Toledo, September, 2001




Transmission Change / AT

Transient Absorption in Solution

Nile blue 580 nm pump / continuum probe
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Results can be described in

terms of well-known
mechanisms:

Time-Resolved Stokes
shift due to solvation
dynamics,

delayed red shift

Excited-state lifetimes
In water (1), (literature)

o NB: 420 ps
o Ox720: 1.8 ns
o CV: 3.3 ns

No evidence of signals
from bulk dimers




normalized TSHG intensity (- Alg,,.)

Ultrafast TSHG at the Air/Water Interface

580 nm pump - SHG (290 nm) probe

Nile blue

Nile blue w/ salt
cresyl violet w/ salt |
oxazine 720 w/ salt

time / ps
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Ultrafast TSHG at the Air/Water Interface

580 nm pump - SHG (290 nm) probe
» Single-photon resonant SHG

» Two parallel GSR mechanisms
o Ground state solvent relaxation

o Vibrational relaxation of hot

ground state aggregates

TSHG decay times for aqueous
oxazine dye solutions.

dye 11 (£15%) | 12 (+15%)
PS PS
OX720 5 23
CVv 4 23
NB 5 22
NB w/o LiCl 8 44
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Conclusions

Are interfacial properties consistent with the idea of averaging bulk values?

e Some are:
o Dominance of dimer at surface due to
¢ Dyes driven to lower polarity (hydrophobicity)
¢ Interface polarity is the average of the values for water and air

e Others are not:
o Red-shifted dimer SHG spectrum
o Relative I, 5 and K, vs. bulk salt concentration

Oxazine TSHG dynamics at the interface are:

e Different than the bulk
e New intermediate decay times are similar to previous aggregate results
o Transient due to ground state recovery
¢ Single-photon resonant SHG signal
¢+ Biexponential recovery

o Observed additional recovery compared to colloidal SiO, / water interface
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